4.5 Article

Retina-simulating phantom for optical coherence tomography

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 19, Issue 2, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JBO.19.2.021106

Keywords

phantoms; optical coherence tomography; tissue-mimicking phantoms; optical coherence tomography measurements

Funding

  1. US Food and Drug Administration's Critical Path Initiative

Ask authors/readers for more resources

Optical coherence tomography (OCT) is a rapidly growing imaging modality, particularly in the field of ophthalmology. Accurate early diagnosis of diseases requires consistent and validated imaging performance. In contrast to more well-established medical imaging modalities, no standardized test methods currently exist for OCT quality assurance. We developed a retinal phantom which mimics the thickness and near-infrared optical properties of each anatomical retinal layer as well as the surface topography of the foveal pit. The fabrication process involves layer-by-layer spin coating of nanoparticle-embedded silicone films followed by laser micro-etching to modify the surface topography. The thickness of each layer and dimensions of the foveal pit are measured with high precision. The phantom is embedded into a commercially available, water-filled model eye to simulate ocular dispersion and emmetropic refraction, and for ease of use with clinical OCT systems. The phantom was imaged with research and clinical OCT systems to assess image quality and software accuracy. Our results indicate that this phantom may serve as a useful tool to evaluate and standardize OCT performance. (C) The Authors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available