4.5 Article

Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 15, Issue 2, Pages -

Publisher

SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.3365135

Keywords

second harmonic generation; imaging; cells; action potential; axon; voltage; neuron; culture

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Kanae Foundation
  3. Uehara Foundation

Ask authors/readers for more resources

The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons. 2010 Society of. Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3365135]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available