4.5 Article

Differential permeability rate and percent clearing of glucose in different regions in rabbit sclera

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 13, Issue 2, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2907699

Keywords

glucose; sclera; optical clearing; permeability coefficient; optical coherence tomography

Ask authors/readers for more resources

Imaging of biological tissues with optical coherence tomography (OCT) poses a great interest for its capability to noninvasively outline subsurface microstructures within tissues. However, a major limitation for many optical imaging techniques is inadequate depth penetration of light in turbid media, which is bounded to just a few millimeters. There have been several attempts to improve light penetration depth in biological tissues, including application of different tissue optical clearing methods. In this study, an aqueous solution of glucose (40%) is added to rabbit sclera in vitro, where depth-resolved permeability coefficients and optical clearing are calculated with OCT. The permeability rate in regions in the upper 80- to 100-mu m region is found to be different from that of regions in the deeper 100-mu m region: (6.01 +/- 0.37) x 10(-6) cm/sec and (2.84 +/- 0.68) x 10(-5) cm/sec, respectively. A difference in percent clearing is also noted. Optical clearing of the upper region is about 10% and increased to 17 to 22% in the one beneath. These results demonstrate the capability of OCT-based methods to not only measure the diffusion rate and optical clearing of a tissue, but also its ability of functional differentiation between layers of epithelial tissues. (C) 2008 Society of Photo-Optical Instrumentation Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available