4.4 Article

Antimicrobial acrylic materials with in situ generated silver nanoparticles

Publisher

WILEY
DOI: 10.1002/jbm.b.31963

Keywords

cranioplasty; silver nanoparticles; polymethyl methacrylate; bone cement; antimicrobial

Ask authors/readers for more resources

Polymethyl methacrylate (PMMA) is widely used to treat traumatic head injuries (cranioplasty) and orthopedic injuries (bone cement), but there is a problem with implant-centered infections. With organisms such as Acinetobacter baumannii and methicillin-resistant staphylococcus aureus developing resistance to antibiotics, there is a need for novel antimicrobial delivery mechanisms without risk of developing resistant organisms. Objectives: To develop a novel antimicrobial implant material by generating silver nanoparticles (AgNP) in situ in PMMA. Results: All PMMA samples with AgNP's (AgNP-PMMA) released Ag+ ions in vitro for over 28 days. In vitro antimicrobial assays revealed that these samples (even samples with the slowest release rate) inhibited 99.9% of bacteria against four different strains of bacteria. Long-term antimicrobial assay showed a continued antibacterial effect past 28 days. Some AgNP-loaded PMMA groups had comparable Durometer-D hardness (a measure of degree of cure) and modulus to control PMMA, but all experimental groups had slightly lower ultimate transverse strengths. Conclusions: AgNP-PMMA demonstrated a tremendously broad-spectrum and long-intermediate-term antimicrobial effect with comparable mechanical properties to control PMMA. Current efforts are focused on further improving mechanical properties by reducing AgNP loading and assessing fatigue properties. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 409415, 2012.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available