4.4 Article

Selective Laser Melting: A Unit Cell Approach for the Manufacture of Porous, Titanium, Bone In-Growth Constructs, Suitable for Orthopedic Applications. II. Randomized Structures

Publisher

WILEY
DOI: 10.1002/jbm.b.31504

Keywords

bone in-growth; fixation; randomization; mechanical properties; laser

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)

Ask authors/readers for more resources

In this study, the unit cell approach, which has previously been demonstrated as a method of manufacturing porous components suitable for use as orthopedic implants, has been further developed to include randomized structures. These random structures may aid the bone in-growth process because of their similarity in appearance to trabecular bone and are shown to carry legacy properties that can be related back to the original unit cell on which they are ultimately based. In addition to this, it has been shown that randomization improves the mechanical properties of regular unit cell structures, resulting in anticipated improvements to both implant functionality and longevity. The study also evaluates the effect that a post process sinter cycle has on the components, outlines the improved mechanical properties that are attainable, and also the changes in both the macro and microstructure that occur. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 178-188. 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available