4.4 Article

In Vitro Biodegradation of Designed Tubular Scaffolds of Electrospun Protein/Polyglyconate Blend Fibers

Publisher

WILEY
DOI: 10.1002/jbm.b.31196

Keywords

biodegradation; electrospun scaffolds; nanofibers; vascular grafts; tissue engineering

Funding

  1. National Science Foundation [DMR-0402891]

Ask authors/readers for more resources

Electrospun polyglyconate (Maxon (R)) and its blends with proteins Such as gelatin and elastin, with a spatially designed layer structure, were prepared as potential scaffolds for vascular tissue engineering. lit vitro biodegradation of the electrospun tubular protein/Maxon scaffolds in phosphate buffered saline (pH = 7.3) was studied for the first time. The biodegradation is manifested by uptake of the PBS medium by the hydrophilic proteins and also by the mass loss due to the removal of degraded fragments and uncrosslinked proteins from the matrices. The effect of degradation on the structure-property relations was evaluated by IR, XRD, and DSC analyses of the aged scaffolds. The degradation of amorphous phase of Maxon in the early stages of aging has resulted in an increase in the crystallinity of the polymer. SEM analysis indicated a significant change in nanofiber morphology and fiber-breaking. The mass loss and fiber breaking have negatively impacted the mechanical properties and the effect was maximum at 15-20 days of aging. The scaffold containing low molecular weight buffer soluble elastin revealed relatively better degradation properties compared to that containing high molecular weight buffer insoluble elastin. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 89B: 135-147, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available