4.5 Article

Microgrooved patterns enhanced PC12 cell growth, orientation, neurite elongation, and neuritogenesis

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 101, Issue 1, Pages 185-194

Publisher

WILEY
DOI: 10.1002/jbm.a.34318

Keywords

PC12 cells; micropatterns; neurite; NGF; Si wafer

Ask authors/readers for more resources

Understanding neurite outgrowth, orientation, and migration is important for the design of biomaterials that interface with the neuronal tissue. Micropatterns can significantly influence neurite outgrowth, neurite length, orientation, extracellular matrix expression, neuron differentiation, and migrating velocity. We analyzed the neuritogenesis and neurite outgrowth of PC12 cells in three-dimensional Si wafer with various micropatterns fabricated using photolithography and etching techniques. When nerve growth factor was added into culture medium, PC12 cells started to grow neurites. Extended neurites were significantly affected by different patterns and displayed higher growth-associated protein-43 expression. Cellular performance including growth rate, bipolar phenotype elongation, neurite extension, and growth-associated protein-43 expression of the PC12 cells with a differentiated character are higher on a grooved substrate. However, the grooved pattern can restrict the motility of PC12 cells and decrease the velocity of cellular movement. The average of the number of neurites per cell is the highest on the pillar substrate, but their neurite length is the shortest. In contrast, actin and lamimin expression, motion track, angular deviation, and movement velocity of PC12 cells are most excellent on the planar Si wafer. These findings confirmed that topographical features can cooperatively act with nerve growth factor, signaling the regulation of the formation of neurites. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:185194, 2013.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available