4.5 Article

Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 100A, Issue 3, Pages 728-737

Publisher

WILEY
DOI: 10.1002/jbm.a.34011

Keywords

magnetic fluid hyperthermia; in vitro hyperthermia; monodisperse iron oxide magnetic nanoparticles; cytotoxicity

Funding

  1. NIH/NIBIB [R21 EB008192, RO1 EB013689]

Ask authors/readers for more resources

Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter similar to 10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (sigma 0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, Ho = 14 kA/m); however, with a broader size distribution (sigma 0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available