4.5 Article

Composite scaffolds: Bridging nanofiber and microsphere architectures to improve bioactivity of mechanically competent constructs

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 95A, Issue 4, Pages 1150-1158

Publisher

WILEY
DOI: 10.1002/jbm.a.32934

Keywords

biomaterials; nanofiber; microsphere; polyphosphazene; osteoblast

Funding

  1. NSF [0902969]
  2. NASA [NNJ04HC83G]
  3. Directorate For Engineering
  4. Emerging Frontiers & Multidisciplinary Activities [0902969] Funding Source: National Science Foundation

Ask authors/readers for more resources

Tissue engineering often benefits from the use of composites to produce an ideal scaffold. We present the focused development of a novel structure that combines the biomimetic properties of nanofibers with the robust mechanical aspects of the sintered microsphere scaffold to produce a composite scaffold that demonstrates an ability to mimic the mechanical environment of trabecular bone while also promoting the phenotype progression of osteoblast progenitor cells. These composite nanofiber/microsphere scaffolds exhibited a mechanical modulus and compressive strength similar to trabecular bone and exhibited degradation resulting in a mass loss of 30% after 24 weeks. The nanofiber portion of these scaffolds was sufficiently porous to allow cell migration throughout the fibrous portion of the scaffold and promoted phenotype progression through focal adhesion kinase-mediated activation of the transcription factor Runx2, control scaffolds not containing nanofibers did not demonstrate extensive cell migration or phenotype progression. Ultimately, the focal adhesion kinase activity on the composite nanofiber/microsphere scaffolds demonstrated causality over the production of the mature osteoblast marker, osteocalcin, and the development of a calcified matrix. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 95A: 1150-1158,2010.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available