4.5 Article

Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough Titanium surfaces

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 96A, Issue 2, Pages 449-455

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jbm.a.32948

Keywords

titanium; collagen; surface modification; bone implant; mesenchymal cells

Ask authors/readers for more resources

Microrough, doubly acid etched titanium surfaces (Ti) were further modified by amination and covalent coupling of fibrillar collagen type I (ColTi). Human Mesenchymal Cells (HMC) adhesion and growth, and relevant osteogenic differentiation in nonosteogenic (basal) medium were evaluated by fluorescence microscopy, scanning electron microscopy, and RT-PCR for a three-week period. Results show strongly enhanced HMC adhesion and cell density at short experimental time on ColTi, together with complete spreading of the cell body over the microrough surface topography. RT-PCR analysis of several genes involved in osteogenesis indicate, since the first week of culturing, significant progression of HMC on ColTi along the osteogenic pathway. These results indicate that the adopted process of surface immobilization of collagen, mandatory to impart collagenase resistance in implant sites, does not impair biospecific interactions between HMC and collagen. Thus, it is possible to upgrade properties arising from the control of Ti surfaces topography by surface-chemistry driven enhanced recruitment of precursor osteogenic cells and pro-osteogenic stimula. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 96A: 449-455, 2011.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available