4.5 Article

Orthopedic nano diamond coatings: Control of surface properties and their impact on osteoblast adhesion and proliferation

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 91A, Issue 2, Pages 548-556

Publisher

WILEY
DOI: 10.1002/jbm.a.32227

Keywords

diamond; osteoblast adhesion; proliferation; topography; surface chemistry; nanocrystalline; nanotechnology

Funding

  1. Coulter Foundation

Ask authors/readers for more resources

The superior mechanical and tribological properties of diamond coatings suggest their promise for improving current orthopedic implants. Therefore, understanding and controlling biological responses on diamond coatings are important and necessary for their advancement in orthopedics. For this reason, the objective of the present study was to correlate surface properties of diamond coatings with osteoblast (013) adhesion and proliferation. Diamond coatings on silicon of variable surface features (specifically, grain size, surface roughness and surface chemistry) were fabricated by microwave plasma enhanced chemical-vapor-deposition (MPCVD). Scanning electron microscopy (SEM) as well as atomic force microscopy (AFM) was applied for topographical characterization and contact angles were measured to assess surface wettability. Results revealed that the grain size, surface roughness and wettability of diamond coatings can be controlled by adjusting H-2 plasma in the MPCVD process. Further, results showed enhanced OB adhesion on nanocrystalline diamond (ND) with grain sizes less than 100 nm whereas nanostructured diamond/amorphous carbon coatings (NDp) and microcrystalline diamond (MD) inhibited OB adhesion. H-2 plasma treated ND (NDH) also promoted OB adhesion. Similarly, OB proliferated to a greater extent on ND and NDH compared with MD and uncoated silicon controls. In summary, surface properties (including topography and chemistry) of diamond coatings can be controlled to either promote or inhibit OB functions, which implies that various forms of diamond coatings can be used to either support or inhibit bone growth in different regions of an orthopedic implant. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 91A: 548-556, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available