4.5 Article

Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 85A, Issue 2, Pages 408-417

Publisher

WILEY
DOI: 10.1002/jbm.a.31538

Keywords

electrospun nanofibers; mineralization; hydroxyapatite; polycaprolactone; bone regeneration

Ask authors/readers for more resources

Biocompatible polycaprolactone (PCL) and hydroxyapatite (HA) were fabricated into nanofibrous scaffolds for the mineralization of osteoblasts in bone tissue engineering. PCL and PCL/HA nanofibrous surface were modified using oxygen plasma treatment and showing 0 degrees contact angle for the adhesion and mineralization of osteoblast cells. The fiber diameter, pore size and porosity of nanofibrous scaffolds were estimated to be 220-625 nm, 3-20 mu m, and 87-92% respectively. The ultimate tensile strength of PCL was about 3.37 MPa and PCL/HA was 1.07 MPa to withstand the long term culture of osteoblasts on nanofibrous scaffolds. Human fetal osteoblast cells (hFOB) were cultured on PCL and PCL/HA surface modified and unmodified nanofibrous scaffolds. The osteoblast proliferation rate was significantly (p < 0.001) increased in surface-modified nanofibrous scaffolds. FESEM showed normal phenotypic cell morphology and mineralization occurred in PCL/HA nanofibrous scaffolds, HA acting as a chelating agent for the mineralization of osteoblast to form bone like apatite for bone tissue engineering. EDX and Alizarin Red-S staining indicated mineral Ca2+ and phosphorous deposited on the surface of osteoblast cells. The mineralization was significantly increased in PCL/HA-modified nanofibrous scaffolds and appeared as a mineral nodule synthesized by osteoblasts similar to apatite of the natural bone. The present study indicated that the PCL/HA surface-modified nanofibrous scaffolds are potential for the mineralization of osteoblast for bone tissue engineering. (C) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available