4.5 Article

Nanoporesize affects complement activation

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 87A, Issue 3, Pages 575-581

Publisher

WILEY
DOI: 10.1002/jbm.a.31818

Keywords

nanotopography; nanoporous alumina; complement; whole blood; protein adsorption

Funding

  1. National Institute of Health [GM-62134, EB-003968, AI-066343-01]
  2. Swedish Research Council [5647, 15244]

Ask authors/readers for more resources

In the present study, we have shown the vast importance of biomaterial nanotexture when evaluating inflammatory response. For the first time in an in vitro whole blood system, we have proven that a small increase in nanoporesize, specifically 180 nm (from 20 to 200 nm), has a huge effect on the complement system. The study was done using nanoporous aluminiumoxide, a material that previously has been evaluated for potential implant use, showing good biocompatibility. This material can easily be manufactured with different pore sizes making it an excellent candidate to govern specific protein and cellular events at the tissue-material interface. We performed whole blood studies, looking at complement activation after blood contact with two pore size alumina membranes (pore diameters, 20 and 200 nm). The fluid phase was analyzed for complement soluble components, C3a and sC5b-9. In addition, surface adsorbed proteins were eluted and dot blots were performed to detect IgG, IgM, C1q, and C3. All results point to the fact that 200 nm pore size membranes are more complement activating. Significantly, higher values of complement soluble components were found after whole blood contact with 200 nm alumina and all studied proteins adsorbed more readily to this membrane than to the 20 nm pore size membrane. We hypothesize that the difference in complement activation between our two test materials is caused by the type and the amount of adsorbed proteins, as well as their conformation and orientation. The different protein patterns created on the two alumina membranes are most likely a consequence of the material topography. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 575-581, 2008

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available