4.5 Article

Effect of acetabular component anteversion on dislocation mechanisms in total hip arthroplasty

Journal

JOURNAL OF BIOMECHANICS
Volume 44, Issue 9, Pages 1810-1813

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2011.04.002

Keywords

Total hip arthroplasty; Dislocation; Muscle force; Musculoskeletal computer model

Ask authors/readers for more resources

Quantifying soft-tissue tension around the hip joint during total hip arthroplasty remains difficult. In this study, a three-dimensional computer-aided design model was developed to clarify how component position in total hip arthroplasty contributes to the primary cause of posterior dislocation in cases of flexion, adduction and internal rotation. To better understand the influences of anteversion angle of the acetabular component, its effects on the primary causes of dislocations and the range of motion were investigated. Three different primary dislocation mechanisms were noted: impingement of the prosthetic femoral neck on the cup liner; impingement of the osseous femur on the osseous pelvis: and spontaneous dislocation caused by soft-tissue traction without impingement. Spontaneous dislocation could be detected by calculating hip forces at any thigh position using the computer-aided design model developed. In computer analysis, a transition from prosthetic impingement rate to osseous impingement rate occurred with increasing anteversion angle of the acetabular component. Spontaneous dislocation was detected at angles > 10 degrees of anteversion of the acetabular component when flexion occurred with extreme adduction and internal rotation. This study demonstrated the possibility of spontaneous dislocation that results not from prosthetic or bony impingement but from muscle traction with increased range of motion. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available