4.5 Article

The effects of pad geometry and material properties on the biomechanical effectiveness of 26 commercially available hip protectors

Journal

JOURNAL OF BIOMECHANICS
Volume 44, Issue 15, Pages 2627-2635

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2011.08.016

Keywords

Hip protectors; Hip fractures; Proximal femur; Osteoporosis; Impact; Materials testing

Funding

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN 239735]
  2. Canadian Institutes of Health Research [TIR-103945]
  3. Canada Research Chairs program

Ask authors/readers for more resources

Wearable hip protectors (padded garments) represent a promising strategy to decrease impact force and hip fracture risk during falls, and a wide range of products are currently marketed. However, little is known about how design features of hip protectors influence biomechanical effectiveness. We used a mechanical test system (simulating sideways falls) to measure the attenuation in femoral neck force provided by 26 commercially available hip protectors at three impact velocities (2, 3, and 4 m/s). We also used a materials testing machine to characterize the force-deflection properties of each device. Regression analyses were performed to determine which geometric (e.g., height, width, thickness, volume) and force-deflection properties were associated with force attenuation. At an impact velocity of 3 m/s, the force attenuation provided by the various hip protectors ranged between 2.5% and 40%. Hip protectors with lower stiffness (measured at 500 N) provided greater force attenuation at all velocities. Protectors that absorbed more energy demonstrated greater force attenuation at the higher impact velocities (3 and 4 m/s conditions), while protectors that did not directly contact (but instead bridged) the skin overlying the greater trochanter attenuated more force at velocities of 2 and 3 m/s. At these lower velocities, the force attenuation provided by protectors that contacted the skin overlying the greater trochanter increased with increasing pad width, thickness, and energy dissipation. By providing a comparison of the protective value of a large range of existing hip protectors, these results can help to guide consumers and researchers in selecting hip protectors, and in interpreting the results of previous clinical trials. Furthermore, by determining geometric and material parameters that influence biomechanical performance, our results should assist manufacturers in designing devices that offer improved performance and clinical effectiveness. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available