4.5 Article

Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression

Journal

JOURNAL OF BIOMECHANICS
Volume 43, Issue 13, Pages 2516-2523

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2010.05.020

Keywords

Mesenchymal stem cells; Mechanobiology; Dynamic compression; Oxygen tension; Fracture healing

Funding

  1. Science Foundation Ireland [08/YI5/B1336]
  2. Science Foundation Ireland (SFI) [08/YI5/B1336] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

During fracture healing and microfracture treatment of cartilage defects mesenchymal stem cells (MSCs) infiltrate the wound site, proliferate extensively and differentiate along a cartilaginous or an osteogenic lineage in response to local environmental cues. MSCs may be able to directly sense their mechanical environment or alternatively, the mechanical environment could act indirectly to regulate MSC differentiation by inhibiting angiogenesis and diminishing the supply of oxygen and other regulatory factors. Dynamic compression has been shown to regulate chondrogenesis of MSCs. In addition, previous studies have shown that a low oxygen environment promotes in vitro chondrogenesis of MSCs. The hypothesis of this study is that a low oxygen environment is a more potent promoter of chondrogenic differentiation of MSCs embedded in agarose hydrogels compared to dynamic compression. In MSC-seeded constructs supplemented with TGF-beta 3, GAG and collagen accumulation was higher in low oxygen conditions compared to normoxia. For normoxic and low oxygen culture GAG accumulation within the agarose hydrogel was inhomogeneous, with low levels of GAG measured in the annulus of constructs maintained in normoxic conditions. Dynamic compression did not significantly increase GAG or collagen accumulation in normoxia. However under low oxygen conditions, dynamic compression reduced GAG accumulation compared to free-swelling controls, but remained higher than comparable constructs maintained in normoxic conditions. This study demonstrates that continuous exposure to low oxygen tension is a more potent pro-chondrogenic stimulus than 1 h/day of dynamic compression for porcine MSCs embedded in agarose hydrogels. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available