4.5 Article

The effect of composition and microstructure on the viscoelastic properties of dermis

Journal

JOURNAL OF BIOMECHANICS
Volume 42, Issue 4, Pages 430-435

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2008.12.004

Keywords

Bovine dermis; EMC microstructure; Dynamical mechanical properties; Enzymatic treatments

Ask authors/readers for more resources

Dermis is a heterogeneous tissue in which extracellular matrix components change in relative amount and spatial assembly across the tissue thickness. The effect of the microstructural and compositional heterogeneities on the overall mechanical response of dermis is, however, largely ignored. In this work, we aimed at gaining a better insight into the effect of extracellular matrix microstructure and composition on the mechanical behaviour of different dermal strata by combining mechanical analysis and selective enzymatic digestion of extracellular matrix components. The dynamical-mechanical tests we performed on bovine dermal splits show that the upper dermal stratum, which is richer in papillary dermis, is characterized by higher mechanical properties than the lower one, which is almost composed of reticular dermis. Moreover, the depletion of interfibrillar proteins, proteoglycans and glycosamminoglycans decreases the dynamic moduli of dermis, especially at small frequencies. Of the two dermal layers tested, the upper dermal layer is more sensitive to the enzymatic treatment than the lower layer. Interestingly, the disruption of the elastic network greatly influenced the viscoelastic properties of upper dermis, inducing a dramatic decrease of both storage (G') and loss (G '') moduli, suggesting that the spatial assembly of the elastin and collagen networks as well as their mutual interactions dominate the dynamical mechanical response of the tissue. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available