4.5 Article

Realistic finite element-based stent design: The impact of balloon folding

Journal

JOURNAL OF BIOMECHANICS
Volume 41, Issue 2, Pages 383-389

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2007.08.014

Keywords

stent; finite element method; design; (folded) balloon

Ask authors/readers for more resources

At present, the deployment of an intravascular stent has become a common and widely used minimally invasive treatment for coronary heart disease. To improve these coronary revascularization procedures (e.g. reduce in-stent restenosis rates) the optimal strategy ties in the further development of stent design, material and coatings. In the context of optimizing the stent design, computational models can provide an excellent research tool. In this study, the hypothesis that the free expansion of a stent is determined by the unfolding and expansion of the balloon is examined. Different expansion modeling strategies are studied and compared for a new generation balloon-expandable coronary stent. The trifolded balloon methodology presented in this paper shows very good qualitative and quantitative agreement with both manufacturer's data and experiments. Therefore, the proposed numerical expansion strategy appears to be a very promising optimization methodology in stent design. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available