4.2 Article

Patient-Specific Modeling of Corneal Refractive Surgery Outcomes and Inverse Estimation of Elastic Property Changes

Publisher

ASME
DOI: 10.1115/1.4002934

Keywords

cornea; computational model; laser-assisted in situ keratomileusis (LASIK); hysteresis; biomechanics

Funding

  1. NIH [K12RR023264, 1KL2RR024990]
  2. Research to Prevent Blindness
  3. National Keratoconus Foundation/Discovery Eye Foundation
  4. NATIONAL CENTER FOR RESEARCH RESOURCES [KL2RR024990, K12RR023264] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The purpose of this study is to develop a 3D patient-specific finite element model (FEM) of the cornea and sclera to compare predicted and in vivo refractive outcomes and to estimate the corneal elastic property changes associated with each procedure. Both eyes of a patient who underwent laser-assisted in situ keratomileusis (LASIK) for myopic astigmatism were modeled. Pre- and postoperative Scheimpflug anterior and posterior corneal elevation maps were imported into a 3D corneo-scleral FEM with an unrestrained limbus. Preoperative corneal hyperelastic properties were chosen to account for meridional anisotropy. Inverse FEM was used to determine the undeformed corneal state that produced <0.1% error in anterior elevation between simulated and in vivo preoperative geometries. Case-specific 3D aspheric ablation profiles were simulated, and corneal topography and spherical aberration were compared at clinical intraocular pressure. The magnitude of elastic weakening of the residual corneal bed required to maximize the agreement with clinical axial power was calculated and compared with the changes in ocular response analyzer (ORA) measurements. The models produced curvature maps and spherical aberrations equivalent to in vivo measurements. For the preoperative property values used in this study, predicted elastic weakening with LASIK was as high as 55% for a radially uniform model of residual corneal weakening and 65% at the point of maximum ablation in a spatially varying model of weakening. Reductions in ORA variables were also observed. A patient-specific FEM of corneal refractive surgery is presented, which allows the estimation of surgically induced changes in corneal elastic properties. Significant elastic weakening after LASIK was required to replicate clinical topographic outcomes in this two-eye pilot study. [DOI: 10.1115/1.4002934]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available