4.2 Article

Nonthermal Irreversible Electroporation for Tissue Decellularization

Publisher

ASME
DOI: 10.1115/1.4001882

Keywords

electroporation; tissue scaffold; regenerative medicine

Funding

  1. University of California
  2. NIH [R016R18961]

Ask authors/readers for more resources

Tissue scaffolding is a key component for tissue engineering, and the extracellular matrix (ECM) is nature's ideal scaffold material. A conceptually different method is reported here for producing tissue scaffolds by decellularization of living tissues using nonthermal irreversible electroporation (NTIRE) pulsed electrical fields to cause nanoscale irreversible damage to the cell membrane in the targeted tissue while sparing the ECM and utilizing the body's host response for decellularization. This study demonstrates that the method preserves the native tissue ECM and produces a scaffold that is functional and facilitates recellularization. A two-dimensional transient finite element solution of the Laplace and heat conduction equations was used to ensure that the electrical parameters used would not cause any thermal damage to the tissue scaffold. By performing NTIRE in vivo on the carotid artery it is shown that in 3 days post NTIRE the immune system decellularizes the irreversible electroporated tissue and leaves behind a functional scaffold. In 7 days, there is evidence of endothelial regrowth, indicating that the artery scaffold maintained its function throughout the procedure and normal recellularization is taking place. [DOI: 10.1115/1.4001882]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available