4.2 Article

Quantifying Turbulent Wall Shear Stress in a Stenosed Pipe Using Large Eddy Simulation

Publisher

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.4001075

Keywords

-

Funding

  1. Swedish Research Council [VR 2007-4085]
  2. National Supercomputer Centre (NSC) [SNIC025/08-07]

Ask authors/readers for more resources

Large eddy simulation was applied for flow of Re = 2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an ante grade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction. [DOI: 10.1115/1.4001075]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available