4.5 Article

Preparation and Theophylline Delivery Applications of Novel PMAA/MWCNT-COOH Nanohybrid Hydrogels

Journal

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
Volume 20, Issue 7-8, Pages 1119-1135

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856209X444466

Keywords

Drug delivery; mechanical properties; microstructure; self-assembly; swelling

Funding

  1. National Natural Science Foundation of China [10675078]

Ask authors/readers for more resources

A series of nanohybrid hydrogels was designed and developed based on a hydrogen bond self-assembly of poly(methacrylic acid) (PMAA) networks and carboxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH). The nanohybrid hydrogels show low micropore densities and large mesh sizes with an increase in MWCNT-COOH content. Particularly, the hydrogels containing 10 wt% MWCNT-COOH was observed to collapse at pore walls because of large holes, which is believed to be responsible for high swelling. The ability of the MWCNT-COOH to self-associate with PMAA or water molecules via hydrogen-bonding interactions and an additional electrostatic repulsion govern both pH response of the network and drug release. Increasing pH values causes equilibrium swelling ratios and accumulative release to be elevated. On the other hand, modified mechanical behavior can be obtained under a low content of the MWCNT-COOH in that the high MWCNT-COOH filling effects the formation of PMAA gel networks. Swelling and controlled release profiles of theophylline could be modulated by changing pH values, introducing the MWCNT-COOH and adjusting the proportions of the MWCNT-COOH component. (C) Koninklijke Brill NV, Leiden, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available