4.4 Article

Effect of micro-patterning on bacterial adhesion on polyethylene terephthalate surface

Journal

JOURNAL OF BIOMATERIALS APPLICATIONS
Volume 29, Issue 10, Pages 1351-1362

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0885328214563998

Keywords

Micro-patterning; polyethylene terephthalate; bacterial adhesion; topographic sensing

Funding

  1. China Scholarship Council
  2. Unilever Corporate Research

Ask authors/readers for more resources

Bacterial adhesion on surfaces commonly used in medicine and food industry could lead to infections and illnesses. Topographically patterned surfaces recently have shown to be a promising alternative to chemical antibacterial methods, which might release cytotoxin and promote antibiotic resistance. In this study, we fabricated micro-patterned polyethylene terephthalate surfaces, and quantitatively explored the amount and localization of Escherichia coli MG1655 cells attached on a series of defined topographies. The adhesion was conducted in static conditions and under a weak flow, in both physiological buffer and nutritious solutions. The results showed that in the presence of weak shear force, live bacteria could still maintain sensing ability in nutritious culture, but not in buffer solution. The finely textured surface, which could inhibit bacterial adhesion in the early stage of attachment, reversed its effect to enhance the adhesion after 24h incubation, indicating that microbial cells seemed to be able to sense the disadvantageous condition and eventually overcome it. In terms of adhesion localization, bacteria exhibited preferential adhesion onto the edges of topographic features. The patterned substrates that have the most even (homogeneous) bacterial localization on topographic features retained the least attachment after 24h exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available