4.6 Article

A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 5, Pages 2902-2918

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.610733

Keywords

Colitis; Epithelial Cell; Microbiome; Tight Junction; Tumor Necrosis Factor (TNF); Caco-2; G Protein-coupled Receptor; Linoleic Acid; Metabolite

Funding

  1. Japanese Ministry of Education, Science, Sports and Culture [KAKENHI 22380076, 25292074]
  2. Bio-Oriented Technology Research Advancement Institution of Japan
  3. NEDO Innovation Commercialization Venture Support Project
  4. Agreement of Scientific Cooperation [CNR-JSPS 2010-11]
  5. Grants-in-Aid for Scientific Research [14J06559] Funding Source: KAKEN

Ask authors/readers for more resources

Background: The physiological activity of gut microbial metabolites has recently attracted much attention. Results: A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid (HYA), ameliorates intestinal epithelial barrier impairments by regulating TNFR2 expression via the GPR40-MEK-ERK pathway. Conclusion: HYA-induced GPR40 signaling contributes to the intestinal homeostasis. Significance: Our findings indicate a novel function of GPR40 in the inflamed intestine. Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)--induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF- and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+](i) responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at 12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available