4.6 Article

Cardiomyocyte-specific Loss of Diacylglycerol Acyltransferase 1 (DGAT1) Reproduces the Abnormalities in Lipids Found in Severe Heart Failure

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 43, Pages 29881-29891

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.601864

Keywords

Animal Model; Cardiac Metabolism; Ceramide; Diacylglycerol; Heart Failure; Lipid; Lipotoxicity; Metabolism; Signal Transduction

Funding

  1. National Institutes of Health from the NHLBI [HL45095, HL73029]
  2. National Center for Advancing Translational Sciences [UL1 TR000040]
  3. Heritage Affiliate of the American Heart Association
  4. Department of Human Resources and Social Security of Anhui Province
  5. Anhui Provincial Hospital
  6. China National Major Scientific Program (973 Project) [2010CB912202]
  7. National Natural Science Foundation of China [30930021]

Ask authors/readers for more resources

Background: Total body DGAT1 mice have no cardiac phenotype. Results: Cardiomyocyte DGAT1 knock-out mice have increased mortality and accumulation of potentially toxic lipids, which were corrected by intestinal DGAT1 deletion and GLP-1 receptor agonists. Conclusion: Cardiomyocyte DGAT1 deletion produces heart dysfunction and lipid abnormalities. Significance: Lipotoxicity in the heart can be alleviated by changes in intestinal metabolism. Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase C (PKC), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available