4.6 Article

Glycerol Monomycolate Is a Novel Ligand for the Human, but Not Mouse Macrophage Inducible C-type Lectin, Mincle

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 22, Pages 15405-15412

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.566489

Keywords

Host-Pathogen Interactions; Innate Immunity; Lipids; Macrophages; Mycobacteria; Transgenic Mice; Glycerol Monomycolate; Mincle

Funding

  1. Japan Society for the Promotion of Science [24390255]
  2. Ministry of Health, Labor and Welfare
  3. Institute for Virus Research, Kyoto University
  4. Grants-in-Aid for Scientific Research [12J04754, 14J03573, 25460543, 24390255] Funding Source: KAKEN

Ask authors/readers for more resources

Background: A host receptor has not yet been identified for glycerol monomycolate (GroMM), an immunostimulatory lipid of mycobacteria. Results: GroMM recognition occurred in cell transfectants expressing human, but not mouse Mincle. Human Mincle transgenic mice acquired the ability to respond to GroMM. Conclusion: GroMM is a ligand for human Mincle. Significance: The molecular basis underlying the innate immune recognition of GroMM has been elucidated. An array of lipidic compounds that constitute the cell wall of mycobacteria is recognized by host receptors. Examples include trehalose dimycolate (TDM), which is a major surface-exposed glycolipid of mycobacteria, that interacts with the macrophage inducible C-type lectin, Mincle, and exerts its highly potent adjuvant functions. Recent evidence has suggested that glycerol monomycolate (GroMM), another mycolate-containing lipid species produced by mycobacteria, can stimulate innate immune cells; however, its specific host receptors have yet to be identified. We here demonstrated that cell transfectants expressing human Mincle (hMincle) reacted to both TDM and GroMM, while those expressing mouse Mincle (mMincle) only reacted to TDM and failed to recognize GroMM. Studies using domain swap chimeras confirmed that the ectodomain of hMincle, but not that of mMincle, interacted with GroMM, and site-directed mutagenesis analyses revealed that short stretches of amino acid residues at positions 174-176 and 195-196 were involved in GroMM recognition. To further substantiate the differential recognition of GroMM by hMincle and mMincle, hMincle transgenic/mMincle knock-out mice (i.e. hMincle(+) mice) were established and compared with non-transgenic mice (i.e. mMincle(+) mice). We showed that macrophages derived from hMincle(+) mice were activated by GroMM and produced inflammatory cytokines, whereas those derived from mMincle(+) mice did not exhibit any reactivity to GroMM. Furthermore, local inflammatory responses were elicited in the GroMM-injected skin of hMincle(+), but not mMincle(+) mice. These results demonstrated that GroMM is a unique ligand for hMincle that is not recognized by mMincle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available