4.6 Article

Stress-triggered Activation of the Metalloprotease Oma1 Involves Its C-terminal Region and Is Important for Mitochondrial Stress Protection in Yeast

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 19, Pages 13259-13272

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.542910

Keywords

Genetics; Metalloprotease; Mitochondria; Oxidative Stress; Yeast; Mitochondrial Stress; Oma1; Proteases

Funding

  1. National Institutes of Health [P20 RR-017675, P30GM103335, ES03817]
  2. University of Nebraska-Lincoln Lyman Award
  3. University of Nebraska UCARE program

Ask authors/readers for more resources

Background: Oma1 is a conserved membrane-bound protease that forms a high molecular mass complex. Results: Oma1 activity is induced by stress stimuli and required for survival. The activation is linked to changes in Oma1 oligomer stability and involves its C-terminal region. Conclusion: Oma1 function is activated by mitochondrial stress and is important for stress tolerance. Significance: Novel insights into Oma1 function and a potential stress activation mechanism are provided. Functional integrity of mitochondria is critical for optimal cellular physiology. A suite of conserved mitochondrial proteases known as intramitochondrial quality control represents one of the mechanisms assuring normal mitochondrial function. We previously demonstrated that ATP-independent metalloprotease Oma1 mediates degradation of hypohemylated Cox1 subunit of cytochrome c oxidase and is active in cytochrome c oxidase-deficient mitochondria. Here we show that Oma1 is important for adaptive responses to various homeostatic insults and preservation of normal mitochondrial function under damage-eliciting conditions. Changes in membrane potential, oxidative stress, or chronic hyperpolarization lead to increased Oma1-mediated proteolysis. The stress-triggered induction of Oma1 proteolytic activity appears to be associated with conformational changes within the Oma1 homo-oligomeric complex, and these alterations likely involve C-terminal residues of the protease. Substitutions in the conserved C-terminal region of Oma1 impair its ability to form a labile proteolytically active complex in response to stress stimuli. We demonstrate that Oma1 genetically interacts with other inner membrane-bound quality control proteases. These findings indicate that yeast Oma1 is an important player in IM protein homeostasis and integrity by acting in concert with other intramitochondrial quality control components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available