4.6 Article

Transcription Factor SOX9 Plays a Key Role in the Regulation of Visual Cycle Gene Expression in the Retinal Pigment Epithelium

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 18, Pages 12908-12921

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.556738

Keywords

Eye; Gene Expression; Gene Regulation; MicroRNA; Transcription; SOX9; Retinal Pigment Epithelium; Visual Cycle

Funding

  1. National Institutes of Health [EY016398, EY009769, EY001765]
  2. Foundation Fighting Blindness
  3. Wilmer Pooled Professor Research Fund
  4. Research to Prevent Blindness, Inc.

Ask authors/readers for more resources

Background: The visual cycle is an enzymatic cascade that regenerates the visual chromophore. Results: Visual cycle gene expression is regulated by SOX9 in combination with OTX2 or LHX2 and can be modulated by common microRNAs. Conclusion: A core transcriptional network involving SOX9 regulates visual cycle genes. Significance: Understanding visual cycle gene regulation may have implications for treating retinal degenerative diseases. The retinal pigment epithelium (RPE) performs specialized functions to support retinal photoreceptors, including regeneration of the visual chromophore. Enzymes and carrier proteins in the visual cycle function sequentially to regenerate and continuously supply 11-cis-retinal to retinal photoreceptor cells. However, it is unknown how the expression of the visual cycle genes is coordinated at the transcriptional level. Here, we show that the proximal upstream regions of six visual cycle genes contain chromatin-accessible sex-determining region Y box (SOX) binding sites, that SOX9 and LIM homeobox 2 (LHX2) are coexpressed in the nuclei of mature RPE cells, and that SOX9 acts synergistically with orthodenticle homeobox 2 (OTX2) to activate the RPE65 and retinaldehyde binding protein 1 (RLBP1) promoters and acts synergistically with LHX2 to activate the retinal G protein-coupled receptor (RGR) promoter. ChIP reveals that SOX9 and OTX2 bind to the promoter regions of RPE65, RLBP1, and RGR and that LHX2 binds to those of RPE65 and RGR in bovine RPE. ChIP with human fetal RPE cells shows that SOX9 and OTX2 also bind to the human RPE65, RLBP1, and RGR promoters. Conditional inactivation of Sox9 in mouse RPE results in reduced expression of several visual cycle genes, most dramatically Rpe65 and Rgr. Furthermore, bioinformatic analysis predicts that multiple common microRNAs (miRNAs) regulate visual cycle genes, and cotransfection of miRNA mimics with luciferase reporter constructs validated some of the predicted miRNAs. These results implicate SOX9 as a key regulator of visual cycle genes, reveal for the first time the functional role of LHX2 in the RPE, and suggest the possible regulation of visual cycle genes by common miRNAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available