4.6 Article

Duplication of Genes in an ATP-binding Cassette Transport System Increases Dynamic Range While Maintaining Ligand Specificity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 43, Pages 30090-30100

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.590992

Keywords

ABC Transporter; Carbohydrate Structure; Fluorescence; Substrate Specificity; X-ray Crystallography; Affinity; Functionalization; Mannose-binding Proteins

Funding

  1. United States Department of Energy, Office of Basic Energy Sciences

Ask authors/readers for more resources

Background: The functional role of gene duplicates in a bacterial metabolite transport system is unknown. Results: Duplicated genes have similar ligand specificities, but affinities differ by three orders of magnitude. Conclusion: This expands the ability to respond to nutrient stress and maximizes transport of preferentially metabolized substrates. Significance: Functionalization of gene duplicates in transport pathways allows bacteria to adapt to varying nutrient flux. Many bacteria exist in a state of feast or famine where high nutrient availability leads to periods of growth followed by nutrient scarcity and growth stagnation. To adapt to the constantly changing nutrient flux, metabolite acquisition systems must be able to function over a broad range. This, however, creates difficulties as nutrient concentrations vary over many orders of magnitude, requiring metabolite acquisition systems to simultaneously balance ligand specificity and the dynamic range in which a response to a metabolite is elicited. Here we present how a gene duplication of a periplasmic binding protein in a mannose ATP-binding cassette transport system potentially resolves this dilemma through gene functionalization. Determination of ligand binding affinities and specificities of the gene duplicates with fluorescence and circular dichroism demonstrates that although the binding specificity is maintained the K-d values for the same ligand differ over three orders of magnitude. These results suggest that this metabolite acquisition system can transport ligand at both low and high environmental concentrations while preventing saturation with related and less preferentially metabolized compounds. The x-ray crystal structures of the -mannose-bound proteins help clarify the structural basis of gene functionalization and reveal that affinity and specificity are potentially encoded in different regions of the binding site. These studies suggest a possible functional role and adaptive advantage for the presence of two periplasmic-binding proteins in ATP-binding cassette transport systems and a way bacteria can adapt to varying nutrient flux through functionalization of gene duplicates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available