4.6 Article

The Eph Tyrosine Kinase Receptors EphB2 and EphA2 Are Novel Proteolytic Substrates of Tissue Factor/Coagulation Factor VIIa

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 47, Pages -

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.599332

Keywords

-

Funding

  1. Swedish Research Council [K213-65X11568-18-5, 621-2011-4423]
  2. Swedish Heart and Lung Foundation
  3. Science for Life Laboratory Sweden
  4. Selanders Foundation
  5. Goran Gustafsson Foundation

Ask authors/readers for more resources

Tissue factor (TF) binds the serine protease factor VIIa (FVIIa) to form a proteolytically active complex that can trigger coagulation or activate cell signaling. Here we addressed the involvement of tyrosine kinase receptors (RTKs) in TF/FVIIa signaling by antibody array analysis and subsequently found that EphB2 and EphA2 of the Eph RTK family were cleaved in their ectodomains by TF/FVIIa. We used N-terminal Edman sequencing and LC-MS/MS analysis to characterize the cleaved Eph isoforms and identified a key arginine residue at the cleavage site, in agreement with the tryptic serine protease activity of FVIIa. Protease-activated receptor 2 (PAR2) signaling and downstream coagulation activity was non-essential in this context, in further support of a direct cleavage by TF/FVIIa. EphB2 was cleaved by FVIIa concentrations in the subnanomolar range in a number of TF expressing cell types, indicating that the active cellular pool of TF was involved. FVIIa caused potentiation of cell repulsion by the EphB2 ligand ephrin-B1, demonstrating a novel proteolytical event to control Eph-mediated cell segregation. These results define Eph RTKs as novel proteolytical targets of TF/FVIIa and provide new insights into how TF/FVIIa regulates cellular functions independently of PAR2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available