4.6 Review

DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 43, Pages 29975-29993

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.567073

Keywords

DNA Helicase; DNA Replication; G-quadruplex; Genetic Disease; Genomic Instability; Mitochondria; Twinkle

Funding

  1. National Institutes of Health, NIA
  2. European Union
  3. Academy of Finland (Centre of Excellence funding)
  4. Netherlands Organization for Scientific Research (NWO), VICI Grant [865.10.004]
  5. Fondation ARC
  6. Aquitaine Regional Council
  7. Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Background: Mitochondrial DNA deletions are prominent in human genetic disorders and cancer. Results: Predicted mitochondrial G-quadruplex-forming sequences map in close proximity to known deletion breakpoints and form G-quadruplexes in vitro. Conclusion: The mitochondrial replicative helicase Twinkle inefficiently unwinds intra- and intermolecular G-quadruplexes. Significance: Mitochondrial G-quadruplexes are likely to cause genome instability by perturbing replication machinery. Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the Pattern Finder G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available