4.6 Article

A Conserved Phenylalanine as a Relay between the α5 Helix and the GDP Binding Region of Heterotrimeric Gi Protein α Subunit

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 35, Pages 24475-24487

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M114.572875

Keywords

Computer Modeling; G Protein-coupled Receptor (GPCR); Heterotrimeric G Protein; Protein Conformation; Rhodopsin; Signal Transduction; GDP Release

Funding

  1. National Institutes of Health [EY006062, GM095633, GM080403, MH090192, GM099842, DK097376, S10 RR026915]
  2. National Institutes of Science [BIO Career 0742762, CHE 1305874]
  3. U.S. Department of Energy [DE-AC02-06CH11357]
  4. Michigan Economic Development Corporation
  5. Michigan Technology Tri-Corridor Grant [085P1000817]
  6. Division Of Chemistry
  7. Direct For Mathematical & Physical Scien [1305874] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: GPCRs regulate heterotrimeric G protein activation. However, the intermediate steps regulating GDP release are still unknown. Results: Energy analysis pinpoints information flow through G-receptor interaction and GDP release. Conclusion: Hydrophobic interactions around 5 helix, 2-3 strands, and 1 helix are key for GDP stability. Significance: G protein activation defines regulation of high affinity receptor interactions and plays a role defining different cellular responses. G protein activation by G protein-coupled receptors is one of the critical steps for many cellular signal transduction pathways. Previously, we and other groups reported that the 5 helix in the G protein subunit plays a major role during this activation process. However, the precise signaling pathway between the 5 helix and the guanosine diphosphate (GDP) binding pocket remains elusive. Here, using structural, biochemical, and computational techniques, we probed different residues around the 5 helix for their role in signaling. Our data showed that perturbing the Phe-336 residue disturbs hydrophobic interactions with the 2-3 strands and 1 helix, leading to high basal nucleotide exchange. However, mutations in strands 5 and 6 do not perturb G protein activation. We have highlighted critical residues that leverage Phe-336 as a relay. Conformational changes are transmitted starting from Phe-336 via 2-3/1 to Switch I and the phosphate binding loop, decreasing the stability of the GDP binding pocket and triggering nucleotide release. When the 1 and 5 helices were cross-linked, inhibiting the receptor-mediated displacement of the C-terminal 5 helix, mutation of Phe-336 still leads to high basal exchange rates. This suggests that unlike receptor-mediated activation, helix 5 rotation and translocation are not necessary for GDP release from the subunit. Rather, destabilization of the backdoor region of the G subunit is sufficient for triggering the activation process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available