4.6 Article

Coupling of Human DNA Excision Repair and the DNA Damage Checkpoint in a Defined in Vitro System*

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 8, Pages 5074-5082

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.542787

Keywords

Checkpoint Control; DNA Damage Response; DNA Nucleotide Excision Repair; p53; Protein Kinases

Funding

  1. National Institutes of Health [GM32833, GM45190]

Ask authors/readers for more resources

Background: Nucleotide excision repair and the ATR-mediated DNA damage checkpoint responses are genetically coupled. Results: We have analyzed the basic steps of ATR activation in a biochemically defined system. Conclusion: ATR signaling requires enlargement of the DNA excision gap by EXO1. Significance: The six excision repair factors, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of proteins for ATR-activation upon UV-induced DNA damage. DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5 to 3 exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5 to 3 exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available