4.6 Article

FoxO3 Transcription Factor and Sirt6 Deacetylase Regulate Low Density Lipoprotein (LDL)-cholesterol Homeostasis via Control of the Proprotein Convertase Subtilisin/Kexin Type 9 (Pcsk9) Gene Expression

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 288, Issue 41, Pages 29252-29259

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.481473

Keywords

-

Funding

  1. National Institutes of Health (NIDDK) [R00DK077505, R01DK091592]

Ask authors/readers for more resources

Elevated LDL-cholesterol is a risk factor for the development of cardiovascular disease. Thus, proper control of LDL-cholesterol homeostasis is critical for organismal health. Genetic analysis has identified PCSK9 (proprotein convertase subtilisin/kexin type 9) as a crucial gene in the regulation of LDL-cholesterol via control of LDL receptor degradation. Although biochemical characteristics and clinical implications of PCSK9 have been extensively investigated, epigenetic regulation of this gene is largely unknown. In this work we have discovered that Sirt6, an NAD(+)-dependent histone deacetylase, plays a critical role in the regulation of the Pcsk9 gene expression in mice. Hepatic Sirt6 deficiency leads to elevated Pcsk9 gene expression and LDL-cholesterol as well. Mechanistically, we have demonstrated that Sirt6 can be recruited by forkhead transcription factor FoxO3 to the proximal promoter region of the Pcsk9 gene and deacetylates histone H3 at lysines 9 and 56, thereby suppressing the gene expression. Also remarkably, overexpression of Sirt6 in high fat diet-fed mice lowers LDL-cholesterol. Overall, our data suggest that FoxO3 and Sirt6, two longevity genes, can reduce LDL-cholesterol levels through regulation of the Pcsk9 gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available