4.6 Article

Polo-like Kinase 2, a Novel ADAM17 Signaling Component, Regulates Tumor Necrosis Factor ∼ Ectodomain Shedding

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 5, Pages 3080-3093

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.536847

Keywords

ADAM ADAMTS; Metalloprotease; Phosphorylation; Shedding; Tumor Necrosis Factor (TNF); ADAM17; PLK2

Funding

  1. Deutsche Forschungsgemeinschaft [SFB 877, SFB 841, RA2404/1-1]

Ask authors/readers for more resources

Background: The metalloprotease ADAM17 emerged as the main sheddase of several cytokines and cytokine receptors. Results: The acidophilic kinase PLK2 interacts with and phosphorylates ADAM17 in mammalian cells. Conclusion: PLK2 represents a novel cellular interaction partner of ADAM17 modulating its activity. Significance: Regulation of ADAM17 activity is essential for inflammatory responses. ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNF and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available