4.6 Article

Human Mitochondrial Chaperone (mtHSP70) and Cysteine Desulfurase (NFS1) Bind Preferentially to the Disordered Conformation, Whereas Co-chaperone (HSC20) Binds to the Structured Conformation of the Iron-Sulfur Cluster Scaffold Protein (ISCU)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 288, Issue 40, Pages 28755-28770

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.482042

Keywords

ATPases; Chaperone Chaperonin; Enzyme Catalysis; Mitochondria; NMR; Protein Conformation; Protein-Protein Interactions; Scaffold Proteins; Spectroscopy

Funding

  1. NIGMS, National Institutes of Health [U01 GM94622, 8P41 GM103399, 3R01GM058667-11S1]

Ask authors/readers for more resources

Human ISCU is the scaffold protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis and transfer. NMR spectra have revealed that ISCU populates two conformational states; that is, a more structured state (S) and a partially disordered state (D). We identified two single amino acid substitutions (D39V and N90A) that stabilize the S-state and two (D39A and H105A) that stabilize the D-state. We isolated the two constituent proteins of the human cysteine desulfurase complex (NFS1 and ISD11) separately and used NMR spectroscopy to investigate their interaction with ISCU. We found that ISD11 does not interact directly with ISCU. By contrast, NFS1 binds preferentially to the D-state of ISCU as does the NFS1-ISD11 complex. An in vitro Fe-S cluster assembly assay showed that [2Fe-2S] and [4Fe-4S] clusters are assembled on ISCU when catalyzed by NFS1 alone and at a higher rate when catalyzed by the NFS1-ISD11 complex. The DnaK-type chaperone (mtHSP70) and DnaJ-type co-chaperone (HSC20) are involved in the transfer of clusters bound to ISCU to acceptor proteins in an ATP-dependent reaction. We found that the ATPase activity of mtHSP70 is accelerated by HSC20 and further accelerated by HSC20 plus ISCU. NMR studies have shown that mtHSP70 binds preferentially to the D-state of ISCU and that HSC20 binds preferentially to the S-state of ISCU.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available