4.6 Article

Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 289, Issue 5, Pages 2515-2525

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.514828

Keywords

Arabidopsis; Ascorbic Acid; Iron; Membrane Transport; Reductase; Citrate; Malate; vtc2-4

Funding

  1. [20110430]

Ask authors/readers for more resources

Background: Iron long distance transport in plants is underdocumented. Results: Iron is delivered to embryos as ferric complexes with citrate/malate. An ascorbate-mediated reduction step is further required to acquire iron. Conclusion: Ascorbate plays a key role for the chemical reduction and transport of Fe2+. Significance: The identification of iron ligands and the transport process is crucial to further understand how iron is distributed within the plant. Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)(3)Cit(2)Mal(2), Fe(III)(3)Cit(3)Mal(1), Fe(III)Cit(2)). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled Fe-55 demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available