4.7 Review

The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 23, Issue 17, Pages 1329-1350

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2015.6407

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL060234, R01 HL055330] Funding Source: Medline

Ask authors/readers for more resources

Significance: Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. Recent Advances: Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. Critical Issues: Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. Future Directions: Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid. Redox Signal. 23, 1329-1350.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available