4.6 Article

Mammalian Target of Rapamycin (mTor) Mediates Tau Protein Dyshomeostasis IMPLICATION FOR ALZHEIMER DISEASE

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 288, Issue 22, Pages 15556-15570

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.435123

Keywords

-

Funding

  1. Karolinska Institutet research funds
  2. Dementia Foundation
  3. Alzheimerfonden
  4. Wallenberg Foundation
  5. Gun and Bertil Stohne Foundation
  6. Gamla Tjanarinnor Foundation

Ask authors/readers for more resources

Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3 beta, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available