4.6 Article

Kuppfer Cells Trigger Nonalcoholic Steatohepatitis Development in Diet-induced Mouse Model through Tumor Necrosis Factor-α Production

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 48, Pages 40161-40172

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.417014

Keywords

-

Funding

  1. National Institutes of Health [R01DK063222, U19AI083024]

Ask authors/readers for more resources

Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNF alpha and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNF alpha, followed by infiltration of CD11b(int)Ly6C(hi) monocytes, 2 and 10 days, respectively, after starting the methionine/choline- deficient (MCD) diet. Importantly, targeted knockdown of TNF alpha expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNF alpha-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of TNF alpha and MCP-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available