4.6 Article

Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 51, Pages 42708-42725

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.371799

Keywords

-

Funding

  1. National Institutes of Health [DK060596, DK053307, DP1OD008169]

Ask authors/readers for more resources

Certain stress conditions can induce cleavage of tRNAs around the anticodon loop via the use of the ribonuclease angiogenin. The cellular factors that regulate tRNA cleavage are not well known. In this study we used normal and eIF2 alpha phosphorylation-deficient mouse embryonic fibroblasts and applied a microarray-based methodology to identify and compare tRNA cleavage patterns in response to hypertonic stress, oxidative stress (arsenite), and treatment with recombinant angiogenin. In all three scenarios mouse embryonic fibroblasts deficient in eIF2 alpha phosphorylation showed a higher accumulation of tRNA fragments including those derived from initiator-tRNA(Met). We have shown that tRNA cleavage is regulated by the availability of angiogenin, its substrate (tRNA), the levels of the angiogenin inhibitor RNH1, and the rates of protein synthesis. These conclusions are supported by the following findings: (i) exogenous treatment with angiogenin or knockdown of RNH1 increased tRNA cleavage; (ii) tRNA fragment accumulation was higher during oxidative stress than hypertonic stress, in agreement with a dramatic decrease of RNH1 levels during oxidative stress; and (iii) a positive correlation was observed between angiogenin-mediated tRNA cleavage and global protein synthesis rates. Identification of the stress-specific tRNA cleavage mechanisms and patterns will provide insights into the role of tRNA fragments in signaling pathways and stress-related disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available