4.6 Article

1,3-1,4-α-L-Fucosynthase That Specifically Introduces Lewis a/x Antigens into Type-1/2 Chains

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 20, Pages 16709-16719

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.333781

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [24580119]
  2. Urakami Foundation
  3. Grants-in-Aid for Scientific Research [24580119] Funding Source: KAKEN

Ask authors/readers for more resources

alpha-L-Fucosyl residues attached at the non-reducing ends of glycoconjugates constitute histo-blood group antigens Lewis (Le) and ABO and play fundamental roles in various biological processes. Therefore, establishing a method for synthesizing the antigens is important for functional glycomics studies. However, regiospecific synthesis of glycosyl linkages, especially alpha-L-fucosyl linkages, is quite difficult to control both by chemists and enzymologists. Here, we generated an alpha-L-fucosynthase that specifically introduces Le(a) and Le(x) antigens into the type-1 and type-2 chains, respectively; i.e. the enzyme specifically accepts the disaccharide structures (Gal beta 1-3/4GlcNAc) at the non-reducing ends and attaches a Fuc residue via an alpha-(1,4/3)-linkage to the GlcNAc. X-ray crystallographic studies revealed the structural basis of this strict regio- and acceptor specificity, which includes the induced fit movement of the catalytically important residues, and the difference between the active site structures of 1,3-1,4-alpha-L-fucosidase (EC 3.2.1.111) and alpha-L-fucosidase (EC 3.2.1.51) in glycoside hydrolase family 29. The glycosynthase developed in this study should serve as a potentially powerful tool to specifically introduce the Le(a/x) epitopes onto labile glycoconjugates including glycoproteins. Mining glycosidases with strict specificity may represent the most efficient route to the specific synthesis of glycosidic bonds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available