4.6 Article

Regulation of Insulin Signaling and Glucose Transporter 4 (GLUT4) Exocytosis by Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) Phosphatase, Skeletal Muscle, and Kidney Enriched Inositol Polyphosphate Phosphatase (SKIP)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 10, Pages 6991-6999

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.335539

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research [23227005, 23790336] Funding Source: KAKEN

Ask authors/readers for more resources

The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP3 and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available