4.6 Article

Purification and Characterization of a Novel Galloyltransferase Involved in Catechin Galloylation in the Tea Plant (Camellia sinensis)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 53, Pages 44406-44417

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.403071

Keywords

-

Funding

  1. Natural Science Foundation of China [30972401, 31170647, 31170282]
  2. Natural Science Foundation of Anhui Province [11040606M73]
  3. Collegiate Natural Science Foundation of Anhui Province [KJ2012A110]
  4. Program for Changjiang Scholars and Innovative Research Team in University [IRT1101]
  5. Major Project of Chinese National Programmes for Fundamental Research and Development [2012CB722903]

Ask authors/readers for more resources

Catechins (flavan-3-ols), the most important secondary metabolites in the tea plant, have positive effects on human health and are crucial in defense against pathogens of the tea plant. The aim of this study was to elucidate the biosynthetic pathway of galloylated catechins in the tea plant. The results suggested that galloylated catechins were biosynthesized via 1-O-glucose ester-dependent two-step reactions by acyltransferases, which involved two enzymes, UDP-glucose:galloyl-1-O-beta-D-glucosyltransferase (UGGT) and a newly discovered enzyme, epicatechin:1-O-galloyl-beta-D-glucose O-galloyltransferase (ECGT). In the first reaction, the galloylated acyl donor beta-glucogallin was biosynthesized by UGGT from gallic acid and uridine diphosphate glucose. In the second reaction, galloylated catechins were produced by ECGT catalysis from beta-glucogallin and 2,3-cis-flavan-3-ol. 2,3-cis-Flavan-3-ol and 1-O-galloyl-beta-D-glucose were appropriate substrates of ECGT rather than 2,3-trans-flavan3-ol and 1,2,3,4,6-pentagalloylglucose. Purification by more than 1641-fold to apparent homogeneity yielded ECGT with an estimated molecular mass of 241 to 121 kDa by gel filtration. Enzyme activity and SDS-PAGE analysis indicated that the native ECGT might be a dimer, trimer, or tetramer of 60-and/or 58-kDa monomers, and these monomers represent a heterodimer consisting of pairs of 36- or 34- of and 28-kDa subunits. MALDI-TOF-TOF MS showed that the protein SCPL1199 was identified. Epigallocatechin and epicatechin exhibited higher substrate affinities than beta-glucogallin. ECGT had an optimum temperature of 30 degrees C and maximal reaction rates between pH 4.0 and 6.0. The enzyme reaction was inhibited dramatically by phenylmethylsulfonyl fluoride, HgCl2, and sodium deoxycholate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available