4.6 Article

A Polymerase Mechanism-based Strategy for Viral Attenuation and Vaccine Development

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 38, Pages 31618-31622

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C112.401471

Keywords

-

Funding

  1. National Institutes of Health Grant [AI053531]

Ask authors/readers for more resources

Live, attenuated vaccines have prevented morbidity and mortality associated with myriad viral pathogens. Development of live, attenuated vaccines has traditionally relied on empirical methods, such as growth in nonhuman cells. These approaches require substantial time and expense to identify vaccine candidates and to determine their mechanisms of attenuation. With these constraints, at least a decade is required for approval of a live, attenuated vaccine for use in humans. We recently reported the discovery of an active site lysine residue that contributes to the catalytic efficiency of all nucleic acid polymerases (Castro, C., Smidansky, E. D., Arnold, J. J., Maksimchuk, K. R., Moustafa, I., Uchida, A., Gotte, M., Konigsberg, W., and Cameron, C. E. ( 2009) Nat. Struct. Mol. Biol. 16, 212-218). Here we use a model RNA virus and its polymerase to show that mutation of this residue from lysine to arginine produces an attenuated virus that is genetically stable and elicits a protective immune response. Given the conservation of this residue in all viral polymerases, this study suggests that a universal, mechanism-based strategy may exist for viral attenuation and vaccine development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available