4.6 Article

The Mammalian de Novo DNA Methyltransferases DNMT3A and DNMT3B Are Also DNA 5-Hydroxymethylcytosine Dehydroxymethylases

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 40, Pages 33116-33121

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C112.406975

Keywords

-

Funding

  1. Frontier of Science Award from the National Science Council (NSC)
  2. Academia Sinica (AS), Taipei, Taiwan

Ask authors/readers for more resources

For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases. Significantly, intactness of the C methylation catalytic sites of these de novo enzymes is also required for their 5-hmC dehydroxymethylation activity. That DNMT3A and DNMT3B function bidirectionally both as DNA methyltransferases and as dehydroxymethylases raises intriguing and new questions regarding the structural and functional aspects of these enzymes and their regulatory roles in the dynamic modifications of the vertebrate genomes during development, carcinogenesis, and gene regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available