4.6 Article

Role of Phosphatidylinositol 3,4,5-Trisphosphate (PIP3) 5-Phosphatase Skeletal Muscle- and Kidney-enriched Inositol Polyphosphate Phosphatase (SKIP) in Myoblast Differentiation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 37, Pages 31330-31341

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.388785

Keywords

-

Funding

  1. Japan Diabetes Foundation
  2. Hyogo Science and Technology Association
  3. Grants-in-Aid for Scientific Research [23790336, 23227005] Funding Source: KAKEN

Ask authors/readers for more resources

Insulin-like growth factors (IGFs) are essential for the development, regeneration, and hypertrophy of skeletal muscles. IGF-II promotes myoblast differentiation through phosphatidylinositol 3-kinase (PI 3-kinase), Akt, and mTOR signaling. Here, we report that skeletal muscle-and kidney-enriched inositol polyphosphate phosphatase (SKIP) negatively regulates myogenesis through inhibition of IGF-II production and attenuation of the IGF-II-Akt-mTOR signaling pathway. We also demonstrate that SKIP expression, which was markedly elevated during differentiation, was controlled by MyoD in C2C12 cells. Expression of SKIP inhibited IGF-II at the transcription level. These results indicate that SKIP regulates MyoD-mediated muscle differentiation. Silencing of SKIP increased IGF-II transcription and myoblast differentiation. Furthermore, knockdown of SKIP resulted in thick myotubes with a larger number of nuclei than that in control C2C12 cells. Taken together, these data indicate that SKIP controls the IGF-II-PI 3-kinase-Akt-mTOR auto-regulation loop during myogenesis. Our findings identify SKIP as a key regulator of muscle cell differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available