4.6 Article

Augmented Phosphorylation of Cardiac Troponin I in Hypertensive Heart Failure

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 2, Pages 848-857

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.293258

Keywords

-

Funding

  1. National Institutes of Health [R01HL096971, AG032009]
  2. Wisconsin Partnership Fund for a Healthy Future
  3. American Heart Association

Ask authors/readers for more resources

An altered cardiac myofilament response to activating Ca2+ is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca2+ sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinaseA(PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-alpha and -delta, decreased PKC epsilon, but no changes in PKA or PKC-beta levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available