4.6 Article

Iridoid-specific Glucosyltransferase from Gardenia jasminoides

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 37, Pages 32866-32874

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.242586

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Grants-in-Aid for Scientific Research [22710218] Funding Source: KAKEN

Ask authors/readers for more resources

Iridoids are one of the most widely distributed secondary metabolites in higher plants. They are pharmacologically active principles in various medicinal plants and key intermediates in the biosynthesis of monoterpenoid indole alkaloids as well as quinoline alkaloids. Although most iridoids are present as 1-O-glucosides, the glucosylation step in the biosynthetic pathway has remained obscure. We isolated a cDNA coding for UDPglucose: iridoid glucosyltransferase (UGT85A24) from Gardenia jasminoides. UGT85A24 preferentially glucosylated the 1-O-hydroxyl group of 7-deoxyloganetin and genipin but exhibited only weak activity toward loganetin and no activity toward 7-deoxyloganetic acid. This suggests that, in the biosynthetic pathway of geniposide, a major iridoid compound in G. jasminoides, glucosylation occurs after methylation of 7-deoxyloganetic acid. UGT85A24 showed negligible activity toward any acceptor substrates other than iridoid aglycones. Thus, UGT85A24 has a remarkable specificity for iridoid aglycones. The mRNA level of UGT85A24 overlaps with the marked increase in genipin glucosylation activity in the methyl jasmonate-treated cell cultures of G. jasminoides and is related to iridoid accumulation in G. jasminoides fruits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available