4.6 Article

Glypican-1 Stimulates Skp2 Autoinduction Loop and G1/S Transition in Endothelial Cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 8, Pages 5898-5909

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.325282

Keywords

-

Ask authors/readers for more resources

The heparan sulfate proteoglycan glypican-1 (GPC1) is involved in tumorigenesis and angiogenesis and is overexpressed frequently in tumor and endothelial cells (ECs) in human gliomas. We demonstrated previously that in brain EC, GPC1 regulates mitotic cyclins and securin as well as mitosis and that GPC1 is required for progression through the cell cycle. To characterize the molecular mechanism underlying cell cycle regulation by GPC1, we systematically investigated its effects on key G(1)/S checkpoint regulators and on major signaling pathways reportedly activated by Dally (Division abnormally delayed) the Drosophila GPC1 homologue. We found that elevated GPC1 affected a wide range of G(1)/S checkpoint regulators, leading to inactivation of the G(1)/S checkpoint and increased S phase entry, apparently by activating the mitogen-independent Skp2 autoinduction loop. Specifically, GPC1 suppressed CDK inhibitors (CKIs), including p21, p27, p16, and p19, and the D cyclins, and induced CDK2 and Skp2. GPC1 may trigger the Skp2 autoinduction loop at least partially by suppressing p21 transcription as knockdown of p21 by RNAi can mimic the effect of GPC1 on the cell cycle regulators related to the loop. Moreover, multiple mitogenic signaling pathways, including ERK MAPK, Wnt and BMP signaling, were significantly stimulated by GPC1 as has been reported for Dally in Drosophila. Notably, the c-Myc oncoprotein, which is frequently up-regulated by both ERK and Wnt signaling and functions as a potent transcription repressor for CKIs as well as D cyclins, was also significantly induced by GPC1. These findings provide mechanistic insights into how GPC1 regulates the cell cycle and proliferation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available